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In this paper, we formulate a method wherein we harness the results of the Painlevé analysis to
generate the solutions of the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur system completely in
terms of the arbitrary functions. This method is mainly based on the results of the truncated Painlevé
expansion. Different types of interactions among dromions are deeply understood both analytically
and numerically. Especially, different from the traditional viewpoint, we point out that the soliton
(dromion) fission and fusion may be an approximate phenomenon.
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1. Introduction

The recent spurt in the study of integrable models in
(2+1)-dimensions is mainly attributed to the identifica-
tion of dromions [1 —4] which decay exponentially in
all directions. These dromions which exist at the point
of intersection of two ghost solitons can be driven any-
where in the two-dimensional plane by suitably choos-
ing the boundaries. Can one generate solutions which
are more general than the exponentially localized solu-
tions just as the one-dimensional solitons happen to be
the special case of the doubly periodic Jacobian ellip-
tic functions? How can they be generated? The primary
objective of this paper is to make a nascent contribution
in this direction to answer the above questions.

It is known that for higher dimensional soliton
systems, there are abundant localized excitations and
rich interaction phenomena. Especially, the interac-
tions among dromions may be completely elastic in
some cases and completely inelastic in some other
cases. When the interaction is inelastic, two dromions
may exchange some physical quantities or even com-
pletely exchange their shapes. Even though the fact
that one dromion may split into two [5] and two or
more dromions may fuse together to form a single
dromion [6] is already known, one does not really
know the criterion behind the fission and fusion of
dromions. In this paper, we take a typical two-dromion
solution of the Ablowitz-Kaup-Newell-Segur (AKNS)

system as a simple example to give a clear picture on
the dromion interaction.

2. (2+1)-Dimensional AKNS System

The (2+1)-dimensional AKNS system is one of the
most important dynamical systems arising in various
physical situations [7—9] and is given by

iqr"“]xx"“]yy_ZAQ(U'i_V):Oa (D

—iry+ru+ry—2Ar(U+V) =0, )

Ve=(gr)y orV = / (grhdr Va0, ()

Uy = (g lorU = [ @ty + Ua(e)], @)

where ¢ and r are the complex physical fields, and V
and U are the potentials. The above equation system
(1)—(4) reduces to the Davey-Stewartson (I) equa-
tion [10] under the reduction r = ¢*. Expanding the
physical fields and the potentials in the form of a Lau-
rent series in the neighbourhood of a noncharacteristic
manifold ¢(x,y,7) = 0 and utilizing the results of the
Painlevé test admitted by the above equation [11, 12],
we obtain the following Bicklund transformation by
truncating at the constant level term:
_ 4
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Considering a vacuum solution for the physical fields,

q1=0, r =0. )
The potentials V and U can be driven by lower dimen-
sional arbitrary functions of space and time of the form
(after substituting the vacuum solutions)

V2:V2(y7t)7 U2:U2(x7t)' (10)
We now substitute the Béacklund transformation (5)—
(8) with the above choice of {g, 1, V2, Uz } into (1)—
(4) to obtain by collecting the coefficients of (])*3,

AUp=97, AVo=07, Aqoro=0:0y. (11)
Collecting the coefficients of ¢ 2, we obtain the fol-
lowing set of equations:

—igo®r — 2q0xPx — GoPrx — 2q0y¢y

(12)
—qoPyy —2Aqo[U; + V1] =0,
iro®r — 2rox Py — roQPux — 2’”0y¢y (13)
— I’()d)w — 2%)‘0[(]] + V]] =0,
Vox — Vi¢x = [qo70]y, (14)
Uoy — U1y = [qo70]x- (15)

Solving the above set of overdetermined equations
consistently, we obtain

_ $ 0 — 0y

Vi= P ; (16)
_ ¢x (ny - ¢xx¢y

Uy = 7&% . a7

Now, collecting the coefficients of ¢!, we obtain
the following set of equations:

iqor + gox + qoyy — 2Aqo[U2 + V2] = 0, (18)
—irot‘f'roxx—l—royy—Zﬂro[Uz-i-Vz} =0, (19)
Vix =0, (20)
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Uy =0. 1)

The compatibility of the above equations requires that
the manifolds ¢ and g should evolve as

d)(x,y,t):(P](x,t)—i-d)z(y,t), (22)

ro(x,y,t) = q1(x,1)g2(y,1). (23)

From the Painlevé analysis of the (2+1)-dimensional
AKNS system, we know that the resonance at r = —1
represents the arbitrariness of the manifold and this is
indeed reflected by (22), while the resonance at r = 0

represents the arbitrariness of either go or ry which is
in line with (23).

3. Solutions of the (2+1)-Dimensional
AKNS Equation and their Interactions

Thus, the physical fields of the (2+1)-dimensional
AKNS equation can be explicitly given as

g = D&NDB0)
O1(x,t) +92(3,1)’

;= ¢1x¢2y
A’QI(th)‘IZ(yat)((Pl(x’t)+¢2(y>t))’
while the potentials U and V can also be solved
in terms of the arbitrary functions ¢ (x,7), @,(x,1),
QI(x’t)’ QZ(y’t) and C(t):

(24)

(25)

- _%{mml (6,0) + 0200, 0)] b

L )+ i) —cawn
2Aq1(x,t) ’
1
V= _I{ln[(Pl (x,2) + &2 (y,1)] }yy
27

iq2: (y,1) + qoyy (3, 7) + c(t) g2 (9,1)
2Aq>(y,1)

The presence of the two-dimensional arbitrary func-
tions presents the freedoms to generate a wide class
of solutions of the (2+1)-dimensional AKNS equation.
From the above, we find that the physical quantity “gr”
takes the form

qr= ¢1x¢2y
a’((Pl (X,t) + ¢2(yat))2 .

In (1+1)-dimensions, a single soliton can be found
from the limiting case of a related periodic solution

(28)
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Fig. 1. (a) A plot of the periodic solution (28) for the choices given by (29), (30) and (31). (b) The contour plot of the periodic
wave shown by (a). (¢) The dromion lattice with m; = 0.99, my = 0.9995. (d) A single dromion for the same choice given

by (28), (29) and (30) with my =my = 1.

expressed by Jacobi elliptic functions. To generate a
one-dromion solution for the quantity gr, which can be
related to the energy of the system, we now drive the
arbitrary function by Jacobi elliptic functions.

For instance, if we choose

¢1(x,t) =a0+alsn(k1x—a)1t,m1), (29)

$2(y,1) = azsn(kay — wnot,ms), |ao| > |ai|+|az|, (30)

we obtain the one dromion of the AKNS system in
terms of the Jacobian elliptic function. Figure la is a
snapshot of the periodic solution (28) under the above
choice of arbitrary functions with the following param-
eters:

110:8,
w; =2,

a1:a2:k1:k2:l:1

’ 31
=0, m =02, G

nmyp = 0.3

at time ¢ = 0. Figure 1b is a contour plot of Figure 1a.
When m| and m; approach unity, we get a dromion lat-
tice solution given by Fig. 1c for the same parametric

choice except that m; = 0.99, my = 0.9995. Finally,
when m; = my = 1, the dromion lattice tends to a sin-
gle dromion which is described by (28) with

¢1(x,1) = ap + a; tanh(k;x — 1), (32)

¢2(y7t) ZQZtanh(ka_a)Zt),

and is shown in Fig. 1d at r = 0. Thus, we find that
the exponentially localized dromions found earlier by
Boiti et al. [1] appear only as a special case of the so-
lutions driven by Jacobian elliptic functions.

The above analysis can be easily extended to gen-
erate multiple periodic wave solutions unlike (1+1)-
dimensions where multiple soliton solutions can not
be obtained from a limiting case of multiple periodic
wave solutions expressed by means of the Jacobi el-
liptic functions. However, one can find many kinds of
multiple periodic solutions in (2+1)-dimensions which
are the generalizations of the different types of multi-
dromions.

lao| > |ar|+az|, (33)
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Fig. 2. Approximate dromion fission at times: (a) t = —3; (b) t = 0; (c) t = 0.7; (d) t = 2; (e) t = 3. (f) The tiny dromion at
time t = —3 which is not observed in Fig. 1a as its amplitude is much smaller than that of the bigger one.

For instance, the choice

N

O1(x,t :(10"‘;&,'5116[ kix — w;t,m;), (34)

=
¢ >0, d; >0,

M
¢2 y,t) =as Zbisndi Kiy_Qif,Iii ;
i=1
|

N M (35)
lao| > Z |a;] +Z |b
generates (M + N) periodic wave interaction solutions

i=1 i=1

which are the generalization of an M X N dromion
solution.

It is known that localized excitations in higher di-
mensions undergo both elastic and inelastic collisions.
Two localized excitations may exchange their physical
quantities such as the energy and the momentum. Two
solitons (or solitary waves) may fuse together to form
one soliton, and one soliton may split into two solitons.
To bring out a deeper understanding on the interaction
of dromions, we take a two-dromion solution of the
AKNS system with the following choices of the arbi-
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Fig. 3a

trary functions:

01 (x,1) = ap + a; tanh(k;x — 1)

36
+ ap tanh(kzx + (th), (36)
¢2(y,1) = aztanh(k3y — st ),

(37)
lao| > |a1| + |az| + |a3]-

Before we give a detailed analytical analysis of the in-
teraction of dromions, we first discuss them numeri-
cally.

Figure 2 shows the evolution of the two-dromion
solution (28) with (36) and (37) and the parametric
choice

ag — 24,
w; = 2,

ay = 20,
) = _27

am=a3=k =ky=ks=1,
A=1 (38)

attimest = —3, 0, 0.7, 2 and 3, respectively.

From Figs. 2a and 2b, we observe only one dromion.
From Figs. 2c - 2e, we find that one dromion splits into
two. This phenomenon is known as dromion (or soli-
ton) fission. However, this observation may not be ex-
actly correct at least for the (2+1)-dimensional AKNS
system. Actually, before the interaction, there are two
dromions. While one is explicitly visible, the other is
relatively too small as to observe it explicitly. If we
search and focus on a region far away from the big-
ger dromion, we can recover the smaller one. Fig-
ure 2f shows that before the interaction (at t = —3),
a smaller dromion does really exist with the ampli-
tude ~ 0.0005, while the amplitude of the bigger one
is about 0.2. Strictly speaking, after the interaction, the
tiny dromion obtains energy from the bigger one and
becomes visible. From this, one can conclude that the
dromion fission may be considered only as an approx-
imate phenomenon.

111

Fig. 3b

-20
Fig. 3. The pursuant dromion interaction: (a) before the interaction at time t = —3.5; (b) after the interaction at t = 3.5.

Different choices of the constant parameters in (36)
and (37) may lead to different inelastic collision phe-
nomena. Figure 3 shows the inelastic pursuant dromion
interaction and illustrates how they evolve in time ex-
changing energy among themselves, while Fig. 2 dis-
plays a head on collision of dromions.

To bring out the exchange interaction [13] where
the interacting dromions completely exchange their
shapes, we again consider the two-dromion solu-
tion (28) with (36) and (37) and choose the parameters
as

a():24,
(D]:Z, ) =

aj :azzagzkl :]Q:kg:

L,
39
—2, A=1. (39

From Figs. 4a and 4c, one finds that the left moving
dromion after the interaction (t = 2.5) possesses the
shape of the right moving dromion before the interac-
tion (t = —2.5) and vice versa. This conclusion can be
strictly proved analytically later.

Figure 5 brings out the fusion of two dromions. Be-
fore the interaction (Fig. 5a), there are two explicit
dromions. After the interaction (Fig. 5¢), we observe
only one dromion and we call this phenomenon as
dromion (or soliton) fusion. It must be emphasized
that the concept of fusion is again an approximate
phenomenon like fission with reference to the (2+1)-
dimensional AKNS system as the tiny dromion with
amplitude ~ 0.0005 can be made visible by search-
ing far away from the domain of the bigger dromion
(Fig. 51).

The interaction discussed so far is inelastic in na-
ture. To bring out the multi-dromion elastic interaction,
we choose the arbitrary functions as

M (x,t) =ap+ alsech(klx — (Dlt)

40
+ apsech(kyx+ ant), (40)
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Fig. 5. The approximate fusion interaction of dromions at times: (a) t = —3; (b) t = 0; (c) t = 3. (d) A tiny dromion after the
interaction at r = 3.
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$2(y,1) = aztanh(kzy — wst). 41)

Figure 6 shows elastic interaction of the dipole-type
dromions (with positive and negative amplitude) given
by (28) with (40) and (41) for the parametric choice

ap = 13,

a2:3,

a) = as :k1:k2:k3:1,

42
w=-2, A=1 (“42)

w; =2,

The above numerical results can also be proved an-
alytically by carrying out the asymptotic analysis of

qr-=qr.—w=

113

Fig. 6b

Fig. 6. The completely elastic interaction of dipole-type
dromions at times: (a)t = —3; (b)t =0; (¢c) t = 3.

the expression given by (28) with (36) and (37) or (40)
and (41).

Without loss of generality, we can always assume
that k; > 0 and k, > 0 in (36) and (40) as tanh(x) is
an odd function of x and sech(x) is an even function,
while a; and a, are arbitrary constants. Assuming that

o W

p— < —,

ky ki
it is straightforward to find that for the two-dromion
solution (28) with (36) and (37), we have

akiazkysech? (kyx — o;t)sech? (ksy) arkyazkysech? (kox — st )sech? (k3y) 43)
(ao —az+a tanh(klx — a)lt) “+as3 tanh(k3y))2 (ao +a+ap tanh(kgx — a)zl‘) +a3 tanh(kgy))z ’
qr+ = qli—qoo =
akiazkysech? (kyx — o;t)sech? (ksy) arkaazkssech? (kox — ant)sech? (ksy) (44)

(ao + ay + ap tanh(kyx — a)lt) +aj tanh(k3y))2

(ao —a1+a tanh(kgx — a)zl‘) +a3 tanh(kgy))z ’

while for the two-dipole-type-dromion solution (28) with (40) and (41), we obtain

qr+ =gl —+oe =
a1k1a3kgsech2 (klx—a)lt)tanh(klx—a)lt)sechz (k3y)

arkyazkzsech? (kox— st ) tanh(kyx — st )sech? (kzy) (45)

(ag + aysech(kix — @qt) + az tanh(ksy))2

(ag + azsech(kyx — ot ) + az tanh(k3y))?
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Fig. 7a

Fig. 7. The error plots of d1 = 10°|gr—gr_| and d2 = 10° |gr —

For the dipole-dromion interaction, the elastic in-
teraction occurs by virtue of the asymptotic behavior
of (45).

For the two-dromion solution (28) with (36)
and (37), we first write down the amplitudes of the
dromions before and after interaction. Before the in-
teraction, the amplitude for the faster moving dromion
(we assume right moving is faster than left moving) is
given by

_ laiaskiks|
(ap —az)*’

while for the slower moving dromion, we have the am-
plitude given by

A (46)

laxazkoks|
Ay = ————. 47
2= o tar? (47)
After the interaction, the amplitudes are
laiaskiks|
= 48
1+ (a() +a2)2 ( )
for the faster moving dromion and
lacazkoks|
Ayy = —— = 49)
T (ag—a)?

for the slower moving dromion, respectively.

From the expression for the amplitudes, we observe
that the “approximate” fission phenomenon is related
to

Al_ alkl(ao—i-a])z Al
—=——55>1, o — <1, (50)
Ay arky(ag—az)? Ay
while the “approximate” fusion phenomenon will be
observed when
Ay atki(ag—a))?

Ay
= GGy o B 1 (51)
Ay asky(ag+az)? Ayy

R. Radha et al. - Truncated Painlevé Expansion

Fig. 7b

-20
gr+| at times: (a) r = —3.5 and (b) r = 3.5 related to Figure 3.

Figures 2 and 5 correspond to the cases (50) and (51),
respectively.
If the conditions

Ay =Ar, A=A, hi=hk (52)

are satisfied, then we obtain the exchange interaction
shown in Figure 4.

To see the accuracy of the approximate expressions,
we plot down the quantities

d1=10°|gr —gr_| and d2 = 10°|qr — gr |

in Fig. 7 for the inelastic pursuant collision corre-
sponding to Figure 3. Figure 7 shows that the errors
between the exact solution and asymptotic expressions
are only about 1077,

From (24)—(27), we find that two more arbitrary
functions ¢ (x,¢) and g»(y,7) have been included in
exact solutions unlike the solutions obtained from the
multilinear variable separation approach [12]. These
arbitrary functions have no effect on the quantity gr
while their effect on the potentials will have to be in-
vestigated. Figure 8 displays the structures of the po-
tential V for the choice of g; and ¢(¢) as

g1 =4+tanh(x+21), c(t)=e", (53)

while all the other parameters and arbitrary functions
are the same as in the case of Figure 1d. Figures 8a— 8c
show the evolution of the real parts of V while Fig. 8d
exhibits the structure of the imaginary parts of V. From
Fig. 8, we observe that the arbitrary function ¢; may
generate new line solitons for the potential V.

4. Summary and Discussion

In this paper, we have formulated a new method
to construct the solutions of the (2+1)-dimensional
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Fig. 8. The time evolution of the real part of the potential V given by (27) with (32), (33) and (53) at times: (a) t = —3;
(b) t =0; (c) t = 3. (d) The corresponding structure of the imaginary part of the potential V att = 0.

AKNS system by suitably harnessing the results of
the Painlevé analysis. This method which is more el-
egant and straightforward gives us an unprecedented
possibility of constructing a wide class of solutions of
(2+1)-dimensional soliton equations.

We have obtained abundant localized exact solu-
tions and studied interaction properties among dif-
ferent types of localized excitations. We also ob-
served that the dromion interactions may be elas-
tic or inelastic. When the interaction is inelastic,
two dromions may exchange their physical quan-
tities partially and may completely exchange their
shapes. Contrary to the traditional viewpoint, we em-
phasized that the concept of fission (or fusion) of
dromions may be an approximate phenomenon at
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least with reference to the (2+1)-dimensional AKNS
system.

We have also obtained multiple periodic wave solu-
tions which may degenerate to multiple dromions just
as one soliton can be obtained as the limiting case of
Jacobi elliptic function in (1+1)-dimensions.

The investigation of the other well-known (2+1)-
dimensional soliton equations using the Painlevé trun-
cation method is under progress and the results will be
published later.
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